Home
Class 12
MATHS
If In = int0^(pi//4) tan^n theta d theta...

If `I_n = int_0^(pi//4) tan^n theta d theta`, then for any +ve integer n, the value of `n(I_(n - 1) + I_(n + 1))` is :

A

`pi/2`

B

`pi/4`

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n) = int_0^(pi/4) tan^(n) theta d theta , then I_(8)+I_(6) equals

If U_(n) = int_0^(pi/4) tan^(n) x dx then u_(n)+u_(n-2) =

If I_(n) = int_0^(pi/4) tan^(n)x dx , then n(I_(n-1)+I_(n+1)) =

If I_n = int_0^(pi//4) tan^n x dx , then lim_(n to oo) n [I_n + I_(n -2)] equals :

If n is any positive integer then the value of (i^(4 n+1)-i^(4 m-1))/(2)=

I_(n) = int_0^(pi/4) tan^(n) x dx, n in N , then I_(10)+I_(8) =

If I_(n) = int_0^(pi/2) sin^(n)x dx then I_(n)/(I_(n-2)) =

cot theta=sin 2 theta(theta neq n pi, n in z), if theta=