Home
Class 12
MATHS
If I(1) = inte^(e^(2)) (dx)/(log x) and ...

If `I_(1) = int_e^(e^(2)) (dx)/(log x)` and `I_(2) = int_1^(2) (e^(x)dx)/(x)` then

A

`2I_1=I_2`

B

`I_1=I_2`

C

`I_1= 2I_2`

D

`I_1+I_2=0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(2x^(2) + e^x)dx

int x/(e^(x^2)) dx

int (x+1)^(2)e^(x)dx =

int x^(2)(e^(x^3))dx =

int_(-1)^(1) (x+1)e^(x)dx

int_1^(2) (log x)dx =

int_0^(1) x^(2).e^(x) dx =

int_(-4)^(1) e^(x) dx .

If I_(1) = int sin^(-1) x dx and I_(2) = int sin^(-1) sqrt(1-x^(2))dx then

If I_(1) = int_0^(1) 2^(x^(2)) dx, I_(2) = int_0^(1) 2^(x^(3)) dx, I_(3) = int_1^(2) 2^(x^(2)) dx, I_(4) = int_1^(2) 2^(x^(3)) dx then,