Home
Class 12
MATHS
underset(0)overset(pi//4)(int)log(1+tanx...

`underset(0)overset(pi//4)(int)log(1+tanx)dx=.....`

A

`pi/8log(tanx)`

B

`pi/8log(3)`

C

`pi/4log(2)`

D

`pi/8log(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of underset(0)overset(pi//2)int log tan x dx is

underset(pi//4)overset(pi//2)(int) cosec^(2)xdx=....

underset(1)overset(e )int log x dx =

underset(0)overset(pi//4)int log ((sin x+cos x)/(cos x))dx

int_0^(pi//2) log(tan x)dx =

If I_(1) = underset(0)overset(pi//2)int x.sin xdx and I_(20 = underset(0)overset(pi//2)(int) x.cos x dx then which one of the following is true?

If I_(n)underset(0)overset(pi//4)inttan^(n) x dx, where n is a positive interger, then I_(10)+I_(8) is

underset(0)overset(pi)intxf(sin x)dx=A underset(0)overset(pi//2)int f(sin x) dx then A is

underset(-pi//4)overset(pi//4)int (dx)/(1+cos 2x) is equal to

Prove that underset(-a)overset(a)int f(x)dx={{:(,2underset(0)overset(a)int f(x)dx,"if f(x) is an even function"),(,0,"if f(x) is an odd function"):} and hence evaluate underset(-pi//2)overset(pi//2)int (x^(3)+x cos x)dx.