Home
Class 12
MATHS
int0^(pi/8) cos^(3) 4 theta d theta =...

`int_0^(pi/8) cos^(3) 4 theta d theta =`

A

`1/3`

B

`1/6`

C

`2/3`

D

`1/4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^(pi) |sin^(3) theta| d theta =

If I_(n) = int_0^(pi/4) tan^(n) theta d theta , then I_(8)+I_(6) equals

If I_n = int_0^(pi//4) tan^n theta d theta , then for any +ve integer n, the value of n(I_(n - 1) + I_(n + 1)) is :

int_0^(2pi) theta sin^2 theta cos theta d theta is equal to :

If int_0^(pi/2) (d theta)/(9 sin^(2) theta + 4 cos^(2) theta) = k pi , then k =

The value of the integral int_0^(pi/4) (sin theta + cos theta)/(9+16 sin 2 theta) d theta is

int_(-pi/2)^(pi/2) cos theta (1+ sin theta)^(2) d theta =

Simplify: (sin^(3) theta + cos^(3) theta)/(sin theta + cos theta) + sin theta cos theta

Prove that: (sin^(3) theta + cos^(3) theta)/(sin theta + cos theta) = 1-sin theta cos theta