Home
Class 12
MATHS
If k int (0)^(1)x.f(3x)dx = int(0)^(3) t...

If `k int _(0)^(1)x.f(3x)dx = int_(0)^(3) t. f(t)dt`, then the value of k is

A

9

B

3

C

`1//9`

D

`1//3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_0^x f(t) dt = x + int_x^l tf (t) dt , then the value of f(1) is :

If int_0^(a) f(x) dx = int_0^(a) f(a-x) dx , then the value of int_0^(pi) x. f(sin x) dx =

If f(x) = int_(0)^(x) t sin t dt, then f'(x) is

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (d) int_(0)^(1)x(1 -x)^(n)dx .

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (f) int_(0)^(pi)(xdx)/(a^(2)cos^(2)x + b^(2)sin^(2)x)

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (a) int_(0)^(a) (sqrt(x))/(sqrt(x) + sqrt(a) - x)dx

Prove that int_(0 )^(a) f (x) dx = int_(0)^(a) f (a -x) dx hence evaluate int_(0)^(pi/2) ( cos^5 x)/( cos^2 x+ sinn ^5 x) dx

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (c) int_(0)^(pi/2)(sqrt(sinx))/(sqrt(sin x) + sqrt(cos x))dx

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (e) int_(0)^(2)xsqrt(2 - x) dx .