Home
Class 12
MATHS
The value of the integral int(-pi//4)^(p...

The value of the integral `int_(-pi//4)^(pi//4) log (sec theta - tan theta)d theta` is

A

0

B

`pi/4`

C

`pi`

D

`pi/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi/2)^(pi/2) cos theta (1+ sin theta)^(2) d theta =

The value of the integral int_0^(pi/4) (sin theta + cos theta)/(9+16 sin 2 theta) d theta is

x = a sec theta, y = b tan theta .

The value of tan theta cot theta is:

If sec theta+tan theta=1.5 then tan theta=

int_0^(2pi) theta sin^2 theta cos theta d theta is equal to :

The number of values of theta in the interval (-pi/2, pi/2) such that theta ne (n pi)/5 for n =0, pm 1, pm 2 and tan theta = cot 5 theta as well as sin 2 theta=cos 4 theta is ________.

Find the values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^tan2θ =0

If tan theta = -4/3 , then sin theta is :