Home
Class 12
MATHS
int0^(2pi) (sinx+|sinx|) dx =...

`int_0^(2pi) (sinx+|sinx|) dx =`

A

0

B

4

C

8

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/4) (cos x- sin x) dx + int_(pi/4)^((5pi)/4) (sinx-cosx) dx + int_(2pi)^(pi/4) (cosx- sinx) dx =

int_0^(pi/2) e^(sinx).sin 2x dx =

Prove that I_(1),I_(2),I_(3)"..." form an AP, if I_(n)=int_(0)^(pi)(sin2nx)/(sinx)dx .

If int_0^(pi) x f (sin x) dx = A int_0^(pi//2) f (sin x) dx , then A is :

int_0^(pi) (xdx)/(1+sinx) =

int_(pi/4)^((3pi)/4) |sinx| dx =

If int_0^pi x f (sin x)dx = A int_0^(pi//2) f (sin x) dx , then A is :

The value of int_0^(pi/2) 2^(sinx)/(2^(sinx)+2^(cosx)) dx is

Let I_(1) = int_a^(pi-a) xf (sin x) dx, I_(2) = int_a^(pi-a) f(sinx) dx then I_(2) is equal to