Home
Class 12
MATHS
If g(x) = int0^x cos^4 t dt, then g(x + ...

If `g(x) = int_0^x cos^4 t dt`, then `g(x + pi)` equals:

A

`g(x)-g(pi)`

B

`g(x)g(pi)`

C

`g(x)//g(pi)`

D

`g(x)+g(pi)`

Text Solution

Verified by Experts

The correct Answer is:
A, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x) = int_0^x cos 4t dt, then g(x + pi) equals :

If f(x) = int_(0)^(x) t sin t dt, then f'(x) is

If F(x) = int_3^x (2 + d/(dt) cos t)dt , then F' (pi/6) equals :

Let, f(x) = int_0^(x) (cos t)/t dt . Then x = (2n+1) pi/2 , f(x) has

If f(x) = int_(2x)^(sinx) cos (t^(3)) dt then f '(x)

For x in 0,(5pi/(2)), define f(x) = int_0^x sqrt(t) sin t dt . Then f has :

If F(x) = int_(x^(2))^(x^(3)) log t dt ,( t gt 0) then F^(')(x) is equal to

If f(x)=int_(0)^(x) log ((1-t)/(1+t)) dt , then discuss whether even or odd?

If phi(x) = int_(1//x)^(sqrtx) sin(t^2) dt, then phi'(1) is equal to