Home
Class 12
MATHS
If veca,vecb,vecc are unit vectors, then...

If `veca,vecb,vecc` are unit vectors, then :
`|veca -vecb|^(2)+|vecb -vecc|^(2)+|vecc-veca|^(2)` does not exceed :

A

`90^@`

B

`120^@`

C

`60^@`

D

`45^@`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are mutually perpendicular unit vectors then |veca+vecb+vecc| is equal to

If veca, vecb, vecc are three non-coplanar vectors, then [veca+ vecb + vecc veca - vecc veca-vecb] is equal to :

If |vecaxxvecb|=4 and |veca*vecb|=2 then |veca|^(2)|vecb|^(2)=

If veca , vecb, vecc and vecd are unit vectors such that (veca xx vecb). (veccxx vecd) =1 and veca. Vecc= 1/2 then :

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then angle between veca and vecb is

If veca, vecb, vecc are three vectors such that veca + vecb + vecc= vec0 and |veca | =2, |vecb|=3, |vecc| = 5, then value of veca. vecb+vecb.vec c+vec c. veca is :

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product : [2veca-vecb, vec2b-vecc,vec2c-veca]=

veca, vecb, vec c are three vectors such that veca + vecb + vec c = vec0, |veca| =1, |vecb| =2, |vec c|=3, then : veca.vecb + vecb .vecc+ vecc.veca is equal to :