Home
Class 12
MATHS
If vecp = veca - vecb , vecq = vec a + v...

If `vecp = veca - vecb , vecq = vec a + vec b ` and `|veca| = |vecb| = 2 ` , then the value of `|vecp xx vecq|` is equal to

A

`2sqrt(t^2-(veca.vecb)^2)`

B

`3sqrt(t^2-(veca.vecb)^2)`

C

`sqrt(t^4-(veca.vecb)^2)`

D

`2sqrt(t^4-(veca.vecb)^2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca| = |vecb| = |veca + vecb| = 1 , then the value of |veca - vecb| is equal to

Find |vecb| if (veca + vecb).(veca - vecb) =8 and |veca| = 8|vecb|

Find |vecb| if ( veca +vecb) .( veca - vecb) =8 and |veca|= 8|vecb|

veca. (veca xx vecb)=

(veca + vecb) xx (veca - vecb) is :

Suppose veca + vecb + vecc = 0, |veca| = 3, |vecb| = 5, |vecc| = 7 , then the angle between veca & vecb is

veca, vecb, vec c are three vectors such that veca + vecb + vec c = vec0, |veca| =1, |vecb| =2, |vec c|=3, then : veca.vecb + vecb .vecc+ vecc.veca is equal to :

If |veca| =8, |vecb| =3 and |veca xx vecb|=12, then veca.vecb is :

If veca .vecb = veca.vec cand veca xx vecb = veca xx vec c,veca ne0 , then