Home
Class 12
MATHS
If veca,vecb,vecc are mutually perpendic...

If `veca,vecb,vecc` are mutually perpendicular unit vectors then `|veca+vecb+vecc|` is equal to

A

1

B

0

C

`sqrt3`

D

3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are mutually perpendicular unit vectors , then (3veca+2vecb).(5veca-6vecb)=

If a = 3, b = 4, c = 5 each one of veca, vecb & vecc is perpendicular to the sum of the remaining then |veca + vecb + vecc| is equal to

If veca, vecb, vecc are three non-coplanar vectors, then [veca+ vecb + vecc veca - vecc veca-vecb] is equal to :

If veca,vecb,vecc are unit vectors, then : |veca -vecb|^(2)+|vecb -vecc|^(2)+|vecc-veca|^(2) does not exceed :

If veca , vecb, vecc and vecd are unit vectors such that (veca xx vecb). (veccxx vecd) =1 and veca. Vecc= 1/2 then :

If veca, vecb, vecc are three non-zero, non-coplanar vectors and vecb_(1) = vecb - (vecb.veca)/(|veca|_(2)) veca, vecb_(2) =vecb + (vecb.veca)/(|veca|^(2)) veca, vecc_(1) =vecc- (vecc.veca)/(|veca|^(2))veca+ (vecb.vecc)/(|vecc|^(2)) vecb _(1), vecc _(2)=vecc- (vecc.veca)/(|veca|^(2))veca-(vecb_(1).vecc)/(|vecb_(1)|^(2)) vecb_(1), vecc_(3)=vecc-(vecc.veca)/(|vecc|^(2)) vecb _(1),vecc_(4)=vecc - (vecc. veca)/(|vecc|^(2)) veca + (vecb. vecc)/(|vecb|^(2)) vecb_(1), then the set of orthogonal vectors is :

If veca, vecb, vecc are three vectors such that veca + vecb + vecc= vec0 and |veca | =2, |vecb|=3, |vecc| = 5, then value of veca. vecb+vecb.vec c+vec c. veca is :

If veca , vecb and vecc are three non-coplanar vectors and vecp , vecq and vecr are vectors defined by vecp = (vecb xx vecc)/([veca vecb vecc]) , vecq = (vecc xx veca)/([veca vecb vecc]) and vecr = (veca xx vec b)/([veca vecb vec c]) , then the value of (veca + vecb) * (vecb + vecc) * vecq + (vecc + vec a) * vecr =