Home
Class 12
MATHS
If veca,vecb and vecc are non-coplaner,t...

If `veca,vecb` and `vecc` are non-coplaner,then value of
`veca{(vecbxxvecc)/(3vecb.(veccxxveca))}-vecb.{(veccxxveca)/(2vecc.(vecaxxvecb))}` is

A

`(-1)/2`

B

`(-1)/3`

C

`-1/6`

D

`1/6`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non-coplanar vectors, then [veca+ vecb + vecc veca - vecc veca-vecb] is equal to :

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

Show that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb)

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product : [2veca-vecb, vec2b-vecc,vec2c-veca]=

If veca+2vecb+3vecc=vecO , then vecaxxvecb+vecbxxvecc+veccxxveca=

If veca , vecb and vecc are three non-coplanar vectors and vecp , vecq and vecr are vectors defined by vecp = (vecb xx vecc)/([veca vecb vecc]) , vecq = (vecc xx veca)/([veca vecb vecc]) and vecr = (veca xx vec b)/([veca vecb vec c]) , then the value of (veca + vecb) * (vecb + vecc) * vecq + (vecc + vec a) * vecr =

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc]=

If veca, vecb, vecc are three non-zero, non-coplanar vectors and vecb_(1) = vecb - (vecb.veca)/(|veca|_(2)) veca, vecb_(2) =vecb + (vecb.veca)/(|veca|^(2)) veca, vecc_(1) =vecc- (vecc.veca)/(|veca|^(2))veca+ (vecb.vecc)/(|vecc|^(2)) vecb _(1), vecc _(2)=vecc- (vecc.veca)/(|veca|^(2))veca-(vecb_(1).vecc)/(|vecb_(1)|^(2)) vecb_(1), vecc_(3)=vecc-(vecc.veca)/(|vecc|^(2)) vecb _(1),vecc_(4)=vecc - (vecc. veca)/(|vecc|^(2)) veca + (vecb. vecc)/(|vecb|^(2)) vecb_(1), then the set of orthogonal vectors is :

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc] =