Home
Class 12
MATHS
If veca , vecb and vecc are three non-co...

If `veca , vecb` and `vecc` are three non-coplanar vectors and `vecp , vecq` and `vecr` are vectors defined by `vecp = (vecb xx vecc)/([veca vecb vecc]) , vecq = (vecc xx veca)/([veca vecb vecc])` and `vecr = (veca xx vec b)/([veca vecb vec c])` , then the value of `(veca + vecb) * (vecb + vecc) * vecq + (vecc + vec a) * vecr` =

A

`alpha=1, beta=10, gamma=3`

B

`alpha=0, beta=10, gamma=-3`

C

`alpha+beta+ gamma=8`

D

`alpha=beta=gamma=0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

veca. (veca xx vecb)=

If veca .vecb = veca.vec cand veca xx vecb = veca xx vec c,veca ne0 , then

If veca, vecb, vecc are three non-coplanar vectors, then [veca+ vecb + vecc veca - vecc veca-vecb] is equal to :

If |veca| = |vecb| = |veca + vecb| = 1 , then the value of |veca - vecb| is equal to

Prove that [veca+vecb vecb+vecc vecc+veca]= 2[veca vecb vecc]

If vecp = veca - vecb , vecq = vec a + vec b and |veca| = |vecb| = 2 , then the value of |vecp xx vecq| is equal to

If [vecaxx vecb vecb xx vecc vecc xx veca] = lamda [veca vecb vecc]^(2), then lamda is equal to :

Prove that [veca+vecb, vecb+vecc, vecc+veca]=2[veca,vecb,vecc]

(veca + vecb) xx (veca - vecb) is :

If veca,vecb and vecc are non-coplaner,then value of veca{(vecbxxvecc)/(3vecb.(veccxxveca))}-vecb.{(veccxxveca)/(2vecc.(vecaxxvecb))} is