Home
Class 12
MATHS
If vec u , vec nu, and vec w are non cop...

If `vec u , vec nu`, and `vec w` are non coplanar vectors and p,q are real numbers, then the equality `[3 vec u p vec nu p vec w]-[p vec nu vec w q vec u]-[2 vec w q vec nu q vec u] = 0` holds for

A

exactly two values of (p, q)

B

more than two but not all values of (p, q)

C

all values of (p, q)

D

exactly one value of (p, q)

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

[vec a + vec b vec b + vec c vec c + vec a] =

If vec a, vec b, vec c are non-coplanar vectors and lambda is a real number, then [lambda ( vec a + vec b) lambda^(2) vec b lambda vec c] = [ vec a vec b + vec c vec b] for

If vec u, vec nu, vec w are three non-coplanar vectors, then (vec u + vec nu - vec w).[(vec u - vec nu) xx (vec nu - vec w)] =

Let vec a, vec b and vec c are unit coplanar vectors then the scalar triple product [2 vec a - vec b 2 vec b - vec c 2 vec c - vec a]

If vec a, vec b, vec c are non coplanar vectors such that, vec b xx vec c = vec a, vec c xx vec a = vec b, vec a xx vec b = vec c , then |vec a + vec b + vec c| =

If vec a, vec b and vec c are non coplanar unit vectors such that vec a xx (vec b xx vec c) = (vec b + vec c)/sqrt2 , then

Let vec u, vec nu and vec w vectors that vec u + vec nu + vec w = vec 0 . If |vec u | =3, |vec nu| = 4 , and |vec w| = 5 , then vec u. vec nu + vec nu . vec w + vec w . vec u =

The inverse of the statement " If vec a = vec = 0 or vec b =vec 0 then vec a xx vec b =vec 0 is

The value of [vec a - vec b, vec b - vec c , vec c - vec a] where |vec a| = 1, |vec b| =5, |vec c| =3 is