Home
Class 12
MATHS
Let u = cot^(-1) sqrt(cos 2 theta) - ...

Let `u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta)` , then the value of sinu is

A

`tan(theta//2)`

B

`tan^2(theta//2)`

C

`cot(theta//2)`

D

`cot^2(theta//2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , then the value of sin u is

cot^(1) sqrt(cos alpha) -tan^(-1) sqrt(cos alpha)= x then sin x

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

(1+cos 2 theta)/(sin 2 theta)=cot theta

If sin theta+cos theta=1 then the value of sin 2 theta is equal to

cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

If 2 cos theta =1 and theta Is an Acute then the value of ' theta ' is:

If sin theta =cos theta ,then the value of 2tan theta+cos^(2)theta is:

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

If sqrt(3) tan theta =1 and theta is acute, find the value of sin 3 theta + cos 2 theta .