Home
Class 12
MATHS
If cos^(-1)p+cos^(-1)q+cos^(-1)r=pi then...

If `cos^(-1)p+cos^(-1)q+cos^(-1)r=pi` then `p^(2)+q^(2)+r^(2)+2pqr`=

A

2

B

`-1`

C

3

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)("cos"(2pi)/3)

If cos^(-1)sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1)sqrt(1-q)=(3pi)/(4) then the value of q is

cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

If sin^(-1) x + cos ^(-1) y = (2pi)/5 , then cos^(-1) x + sin ^(-1) y is

If sin^(-1)x+cos^(-1)y=(2pi)/5," then "cos^(-1)x+sin^(-1)y is

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

The value of sin ^(-1)[cos (cos ^(-1)(cos x)+sin ^(-1)(sin x))] where x in((pi)/(2), pi) is

If x = acos^(3)theta sin^(2)theta , y = asin^(3)theta cos^(2)theta and (x^(2) + y^(2))^(p)/(xy)^(q)(p,q in N) is independent of theta , then :