Home
Class 12
MATHS
If x!=npi,x!=(2n+1)(pi)/(2),nin then (...

If `x!=npi,x!=(2n+1)(pi)/(2),nin` then
`(sin^(-1)(cosx)+cos^(-1)(sinx))/(tan^(-1)(cotx)+cot^(-1)(tanx))`

A

`pi/4`

B

`pi/3`

C

`pi/2`

D

`pi/6`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x ne npi, x ne (2n+1)pi/2 , n in Z , then : sin^(-1)((sin^(-1) (cos x) + cos^(-1) (sinx))/(tan^(-1) (cotx)+cot^(-1) (tanx))) =

If x ne n pi, x ne (2n+1) (pi)/(2) n in Z, then : sin^(-1) ((sin^(-1) (cos x) + cos ^(-1) (sin x))/(tan^(-1) (cot x) + cot^(-1) (tan x )))=

cos[tan^(-1) {sin(cot^(-1) x)}] =

cos [ tan^(-1){sin (cot^(-1)x)}] =

Evaluate : sin^(-1)(sin100)+cos^(-1)(cos100 )+tan^(-1) (tan100)+cot^ −1 (cot100) .

Solve or x 2tan^(-1)(cosx)=tan^(-1)(2cosecx)

int e^(x) (1-cotx +cot^(2)x)dx =

If A = 1/pi [(sin^(-1)(xpi),tan^(-1)(x/pi)),(sin^(-1)(x/pi),cot^(-1)(pix))] B = 1/pi [(-cos^(-1)(xpi),tan^(-1)(x/pi)),(sin^(-1)(x/pi),-tan^(-1)(pix))] then A-B is equal to :

Find x, if tan^(-1)4+cot^(-1)x=(pi)/(2) .

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y