Home
Class 12
MATHS
If tan^(-1)x=(pi)/(4)-tan^(-1)((1)/(3)),...

If `tan^(-1)x=(pi)/(4)-tan^(-1)((1)/(3))`, then x is

A

`1/3`

B

`1/2`

C

`1/4`

D

`1/6`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is

If tan^(-1) 2x + tan^(-1) 3x = (pi)/(4) , then x =

If A = (1)/(pi) [{:(sin^(-1)(pix),, tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),,cot^(-1)((x)/(pi))):}] B = (1)/(pi) [{:(-cos^(-1)(pix),, tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),,-tan^(-1)((x)/(pi))):}] then A - B is equal to

If 3 tan ^(-1)((1)/(2+sqrt(3)))-tan ^(-1) (1)/(x)=tan ^(-1) (1)/(3) then x=

tan^(-1)("tan"(pi)/3)

Prove that : 2tan^(-1)((3)/(4))-tan^(-1)((17)/(31))=(pi)/(4) .

If tan^(-1)((x-1)/(x-2)) + tan^(-1)((x+1)/(x+2)) = pi/4 , then find the value x.

Solve for x:tan^(-1)((x)/(2))+tan^(-1)((x)/(3))=(pi)/(4), sqrt6gtx gt0 .

tan^(-1)("tan"(2pi)/3)