Home
Class 12
MATHS
If cos^(-1)((y)/(b))=nlog((x)/(n)), then...

If `cos^(-1)((y)/(b))=nlog((x)/(n))`, then :

A

`xy_1=nsqrt(b^2-y^2)`

B

`xy_1+nsqrt(b^2-y^2)=0`

C

`y_1=xsqrt(b^2-y^2)`

D

`xy_1-sqrt(b^2-y^2)=0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

if cos^(-1) ((y)/(b))= n log ((x)/(n)), then

If cos^(-1) x - cos ^(-1) (y)/(2) =alpha then 4x^(2) -4xy cos alpha+ y^(3) is equzal to

If y=y(x) and (2+sinx)/(y+1)((dy)/(dx))=-cos x,y(0) =1 then y (pi/2) equals :

If x=costheta+isintheta , y=cosphi+isinphi , z=cosPsi+isinPsi and (y)/(z)+(z)/(x)+(x)/(y)=1 , then : cos(phi-Psi)+cos(Psi-theta)+cos(theta-phi) is :

If "cos"^(-1) x/a +"cos"^(-1) y/b=alpha , then : x^2/a^2 -(2xy)/(ab) cos alpha + y^2/b^2 equals :

If sin^(-1) x + cos ^(-1) y = (2pi)/5 , then cos^(-1) x + sin ^(-1) y is

If sin^(-1)x+cos^(-1)y=(2pi)/5," then "cos^(-1)x+sin^(-1)y is

int(cos^(n-1)x)/(sin^(n+1)x)dx, n ne 0 is