Home
Class 12
MATHS
If m sin^(-1) x = log (e) y , then (1 - ...

If `m sin^(-1) x = log _(e) y` , then `(1 - x^(2)) y'' - xy'` =

A

`m^2y`

B

`-m^2y`

C

2y

D

`-2y`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(2)+sin^(-1)x+log_(e)x, then find (dy)/(dx)

If sin(x+y) = log (x+y) then dy/dx =

If log (x+y) = 2xy, then y^(')(0) =

If sin^(-1) x + cos ^(-1) y = (2pi)/5 , then cos^(-1) x + sin ^(-1) y is

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value of 1/x^(2) + 1/y^(2) equals .

If sin(x+y)+cos (x+y)=log(x+y) , then (d^(2)y)/(dx^(2))=

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y