Home
Class 12
MATHS
If f(x) = sin[pi^(2)]x + cos [-pi^(2)]x ...

If `f(x) = sin[pi^(2)]x + cos [-pi^(2)]x` then `f'(x)` is here `[pi^(2)]` and `[-pi^(2)]` greatest integer function not greater than its value

A

sin 9x `+` cos 9 x

B

9 cos 9x `-` 10 sin 10x

C

0

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x ) = (sin^(2)x)/(1+cot x) + (cos^(2))/(1+tan x) then f((pi)/(4)) is

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

The value of int_x^(2pi) [2 sin x] dx, where [x] represents the greatest integer function, is :

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes th greatest integer function ), then

If f(x)=((sin^(2)x)/(1+cotx))+(cos^(2)x)/(1+tan) , then f'((pi)/(4)) is :

If f : R rarr R is a function defined by : f(x) = [x] c cos ((2x - 1)/(2))pi, where [x] denotes the greatest integer function, then 'f' is :

Number of solutions of the equation cos[x]=e^(2x-1),x in [0,2pi] , where[.] denotes the greatest integer function is

If [x] represents the greatest integer function and f(x)=x-[x]-cos x" then "f^(1)(pi/2)=