Home
Class 12
MATHS
If x+y=tan^(-1)y and (d^(2)y)/(dx^(2))=f...

If x+y=`tan^(-1)y` and `(d^(2)y)/(dx^(2))=f(y)(dy)/(dx)` then f(y)=

A

`-2/y^3`

B

`2/y^3`

C

`1/y`

D

`-1/y`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=a^(x), (d^(2)y)/(dx^(2))=

If y=tan^(-1)(sec x+tan x) then (dy)/(dx) =

If e^(y)(x+1)=1 . Show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

Solve y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))

If y= tan (x+y)," find "(dy)/(dx) .

If y = tan^(-1) ((2x)/(1-x^(2))) then dy/dx =

Find the order and degree, if defined, of each of the following differential equations: (i) (dy)/(dx) - cos x = 0 (ii) xy (d^(2)y)/(dx^(2)) + x((dy)/(dx))^(2) - y (dy)/(dx) = 0 (iii) y''' + y^(2) + e^(y)' = 0