Home
Class 12
MATHS
If y=(tan^(-1)x)^(2) show that (x^(2)+1)...

If `y=(tan^(-1)x)^(2)` show that `(x^(2)+1)^(2)y_(2)+2x(x^(2)+1)y_(1)=2`

A

4

B

0

C

2

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = (tan^(-1)x)^(2) then show that (x^(2) + 1)^(2) (d^2 y)/(dx^2) + 2x(x^2 + 1)(dy)/(dx) = 2

If y= ( sin^(-1) x)^(2) , show that (1-x^(2) ) (d^2 y)/( dx^2) - x (dy)/(dx) =2

If y=(sin^(-1)x) . Show that (1-x^(2)) (d^(2)y)/(dx^(2))-x((dy)/(dx))=0

If y=e^(a cos^(-1)x),-2lexle1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx-a^(2)y=0

y= sin ^(-1)x show that (1-x^2) (d^2 y)/(dx^2) -x (dy)/(dx) =0

If y=tan^(-1)sqrt(x^(2)-1) , then the ratio (d^(2)y)/(dx^(2)):(dy)/(dx)=

If y=tan^(-1)sqrt(x^(2)-1) , then the ratio (d^(2)y)/(dx^(2)):(dy)/(dx)=