Home
Class 12
MATHS
If ((1+i)/(1-i))^(m)=1, then the least p...

If `((1+i)/(1-i))^(m)=1`, then the least positive integral value of m is

A

2

B

3

C

4

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If ((1+i)/(1-i))^(m)=1 , then find the least positive integral value of m.

If ((1+i)/(1-i))^(x)=1 , then x=

((1-i)/(1+i))^(2)=

If ((1+i)/(1-i))^(2m)=1 , then find the least integral value of m.

If omega be a cube root of unity and (1+omega^(2))^(n)=(1+omega^(4))^(n) , then the least positive value of n is

Find the least positive integer m such that ((1+i)/(1-i))^(4m)=1 .

If l^(2) + m^(2) =1 , then the maximum value of l+m is

Find the least positive integer 'n' such that ((1+i)/(1-i))^(n) =1 .

Among the complex numbers, z satisfying |z+1-i| le 1 , the number having the least positive argument is :