Home
Class 12
MATHS
int(0)^(pi//2)(tan^(7)x)/(cot^(7)x + tan...

`int_(0)^(pi//2)(tan^(7)x)/(cot^(7)x + tan^(7)x)dx` is equal to

A

`pi/2`

B

`pi/4`

C

`pi/6`

D

`pi/3`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi//2) log(tan x)dx =

int 1/(x(x^(7)+1)) dx is equal to

int_(0)^(pi//2)(sin^(7//2)x)/((sin^(7//2)x + cos^(7//2)x))dx=

int (tan^(-1)x)^(3)/(1+x^(2)) dx is equal to

int_(pi/4)^(pi/2) (cot^(4)x + cot^(2)x) dx =

int_0^(pi/8) tan^(2) (2x) dx =

inte^(tan^(-1)x)(1+x/(1+x^(2)))dx is equal to

int tan^(5)x dx=