Home
Class 12
MATHS
The value of int(e^(6logx)-e^(5logx))/(e...

The value of `int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx` is equal to

A

0

B

`x^3/3`

C

`3/x^3`

D

`1/x`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of f(e^(6ogx)-e^(5logx))/(e^(4logx) -e^(3logx))dx is equal to

The value of int (e^(6 log x) - e^(5 log x))/(e^(4 log x) - e^(3 log x))dx is equal to

int1/(1+e^(x))dx is equal to

int (x-1)e^(-x) dx is equal to :

Integrate the functions (e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))

int1/(1+e^x)dx is equal to

int x^(3) e^(x^(2))dx is equal to :

int e^(e^(e^(x)))e^(e^(x))dx is equal to :

int e^(3logx)(x^(4)+1)^(-1)dx is equal to :

int_(0)^(1)(dx)/(e^(x)+e^(-x)) is equal to