Home
Class 12
MATHS
If tan^(-1)(x^(2)+y^(2))=alpha then (dy)...

If `tan^(-1)(x^(2)+y^(2))=alpha` then `(dy)/(dx)` is equal to

A

`-x/y`

B

xy

C

`x/y`

D

`-xy`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y= log ((1-x^(2))/(1+ x^(2))) , then (dy)/(dx) is equal to _______

If x = e^(tan^(-1)((y-x^(2))/x^(2)) then dy/dx =

If y = log((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to ________

If y=x^(x^(2)), then (dy)/(dx) equals

If y = log 1-x^(x^(2))/(1+x^(2)) then (dy)/(dx) is equal to

If y=ce^(x//(x-a)) , then 1/y(dy)/(dx) is equal to :

If sin x = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2)) , then (dy)/(dx) is equal to

If y = tan^(-1)((x+a)/(1-xa)) then (dy)/(dx) =

If y = tan^(-1) ((2x)/(1-x^(2))) then dy/dx =

If ysec(tan^(-1)x) then (dy)/(dx) at x=1 is x=1 is equal to