Home
Class 12
MATHS
If x= a cos^(3) theta, y= a sin^(3) thet...

If `x= a cos^(3) theta, y= a sin^(3) theta`, then `1 + ((dy)/(dx))^(2)` is______

A

`tan theta`

B

`tan^2 theta`

C

`sec^2 theta`

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a cos ^(3) theta and y = a sin^(3) theta then (dy)/( dx) =

If x=acos^(3)theta and y=asin^(3)theta , then (dy)/(dx)=

x = a cos theta, y = b sin theta .

Find the slope of the normal to the curve x = a cos^(3)theta, y = a sin^(3) theta at theta = (pi)/3 .

If x=sectheta-costheta,y=sec^(n)theta-cos^(n)theta , then ((dy)/(dx))^(2) is :

Find the slope of the normal to the curve x=a cos^(3) theta,y=a sin^(3) theta at theta=(pi)/(4) .

If x = acos^(3)theta sin^(2)theta , y = asin^(3)theta cos^(2)theta and (x^(2) + y^(2))^(p)/(xy)^(q)(p,q in N) is independent of theta , then :

If x = a (cos x + log tan theta/2) and y = a sin theta then dy/dx is equal to

If 1-cos^(2)theta=(3)/(4) ,then sin theta is: