Home
Class 12
MATHS
If the function g(x) is defined by g(x)=...

If the function g(x) is defined by `g(x)= (x^(200))/(200) + (x^(199))/(199)+ …..+ (x^(2))/(2)+ x + 5`, then g'(0)=________

A

1

B

200

C

100

D

5

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the function g(x) is defined by g(x) = (x^(200))/(200) +(x^(199))/(199)+(x^(198))/(198) +....+(x^(2))/2 +x+5, then g'(0) = _______.

If f (x) is defined [-2, 2] by f(x)=4x^(2)-3x+1 and g(x)=(f(-x)-f(x))/((x^(2)+3)) , then int_(-2)^(2)g(x)dx=

If g(x) = (x^(2)+2x+3) f(x) and f(0) = 5 and lim_(x rarr 0) (f(x)-5)/(x) = 4, then g'(0) =

If f (x) and g (x) are two functions with g(x)=x-(1)/(x) and fog (x)=x^(3)-(1)/(x^(3)) , then f'(x)=

If the function f(x)= x^(3)+e^(x/2) and g(x) = f^(-1)(x) then the value of g^(')(1) is

If linear function f(x) and g(x) satisfy int[(3x-1) cos x + (1-2x)sinx]dx = f(x) cos + g(x) sin x + C , then

The domain for which the function defined by f(x) = 3x^2-1 and g(x) = 3+x are equal is