Home
Class 12
MATHS
If y = e^(sin^(-1)(t^(2)-1)) & x = e^(se...

If `y = e^(sin^(-1)(t^(2)-1))` & `x = e^(sec-1((1)/(t^(2-1)))` then `(dy)/(dx)` is equal to

A

`x/y`

B

`(-y)/x`

C

`y/x`

D

`(-x)/y`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2)) , then (dy)/(dx) is equal to

If sec^(-1)((1+x)/(1+ y)) = a , then (dy)/(dx) is

if sinx =(2t)/(1+t^(2)) , tany= (2t)/(1- t^(2)) then (dy)/(dx) is equal to

If y = sin^(-1) (2xsqrt(1-x^(2))) + sec^(-1) (1/sqrt(1-x^(2))) then dy/dx =

int1/(1+e^x)dx is equal to

int1/(1+e^(x))dx is equal to

If y=e^((tan^(-1)x) then find (dy)/(dx)

If x=a(t-(1)/(t)) , y=a(t+(1)/(t)) then (dy)/(dx) =

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)) , then (dy)/(dx) is