Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y=(pi)/(2), then x^...

If `sin^(-1)x+sin^(-1)y=(pi)/(2)`, then `x^(2)` is equal to

A

`1-y^2`

B

`y^2`

C

0

D

`sqrt(1-y)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin ^(-1) x+cot ^(-1) (1)/(2)=(pi)/(2), then x=

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

If sin^(-1) x + sin^(-1) y=pi/2 , then the value of cos^(-1) x +cos^(-1) y is :

If 4sin^(-1)x + cos^(-1)x = pi, then x equals

If A = 1/pi [(sin^(-1)(xpi),tan^(-1)(x/pi)),(sin^(-1)(x/pi),cot^(-1)(pix))] B = 1/pi [(-cos^(-1)(xpi),tan^(-1)(x/pi)),(sin^(-1)(x/pi),-tan^(-1)(pix))] then A-B is equal to :

If cos ^(-1) x+sin ^(-1) (x)/(2)=(pi)/(6) then x=