Home
Class 12
MATHS
The value of lim(thetato 0)((1-cos4theta...

The value of `lim_(thetato 0)((1-cos4theta)/(1-cos6theta))` is

A

`4//9`

B

`9//4`

C

`9//3`

D

`3//4`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(theta to 0)(1-cos 4theta)/(1-cos 6 theta) is

lim_(theta rarr 0) (1-cos theta)/(theta. costheta)=

lim_(theta rarr 0) (1-cos theta)/(theta sin theta) =

If sin theta = 12/13 (0^(@) lt theta lt 90^(@)) , find the value of (sin^(2) theta - cos^(2)theta)/(2 sin theta cos theta) xx (1)/(tan^(2)theta) .

lim _( theta to x //2) ( cos theta )/( ( pi //2-theta))

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Prove that (cosec theta-cot theta)^(2)=(1-cos theta)/(1+cos theta) OR If sin theta+cos theta = sqrt(2) sin (90-theta) determine cot theta

Prove that (tan theta+ sin theta)/(tan theta-sin theta)= (sec theta+1)/(sec theta-1) OR Prove that (cosec theta- cot theta)^(2)=(1-cos theta)/(1+cos theta)

If cot theta = 7/8 , evaluate: (i) ((1+sin theta)(1-sin theta))/((1+cos theta) (1-cos theta))

Find the value of the determinants (i) {:[( cos theta , -sin theta ),( sin theta , cos theta ) ]:}" " (ii) {:[( x^(2) -x+1,x-1),( x+1,x+1) ]:}