Home
Class 12
MATHS
If y = log (log x) then (d^(2)y)/(dx^(2)...

If y = log (log x) then `(d^(2)y)/(dx^(2))` is equal to

A

`(-(1+logx))/((xlogx)^2)`

B

`(-(1+logx))/(x^2logx)`

C

`((1+logx))/((xlogx)^2)`

D

`((1+logx))/(x^2logx)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log(secx) , then (d^(2)y)/(dx^(2)) is :

If y = log log (log x), then dy/dx =

If y = 2^(log x) , then (dy)/(dx) is

If y = log_(5) (log_(5)x) then dy/dx =

If y = log_(x) (log x) then (dy/dx)_(x = e) =

If y = (log)^(cos x) find (dy)/(dx) .

If y=log_(e) x and n is a positive integer, then (d^(n)y)/(dx^(n)) is equal to :

If y = cos(log sin x), then dy/dx =