Home
Class 12
MATHS
int(0)^(pi//2)(1)/(a^(2).sin^(2)x+b^(2)....

`int_(0)^(pi//2)(1)/(a^(2).sin^(2)x+b^(2).cos^(2)x)dx` is equal to

A

`(pia)/(4b)`

B

`(pia)/(2b)`

C

`(pib)/(4a)`

D

`pi/(2ab)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(dx)/(a^(2)cos^(2)x + b^(2) sin^(2) x) =

int (4)/(sin^2 x cos^(2) x)dx is equal to :

int (sin^(2)x)/(1+cos x) dx is equal to

int_0^(pi) (xdx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) =

int(1)/(sin^(2)x cos^(2)x)dx=

int_(0)^(pi//2)(sin^(1000)xdx)/(sin^(1000)x+cos^(1000)x) is equal to

int_(0)^(pi//2)(sin^(3//2)x)/(sin^(3//2)x+cos^(3//2)x)dx=

int_(-2)^2 |x cos pi x|dx is equal to :

int_(0)^(pi//2)(sin^(1000)xdx)/(sin^(1000)x + cos^(1000)x) is equal to

int_(0)^(pi//2)(sin^(7//2)x)/((sin^(7//2)x + cos^(7//2)x))dx=