Home
Class 14
MATHS
1299 xx1299 = ?...

`1299 xx1299 = ?`

A

1585301

B

1684701

C

1685401

D

1687401

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 1299 \times 1299 \), we can use the formula for the square of a binomial. Specifically, we can express \( 1299 \) as \( 1300 - 1 \). ### Step-by-Step Solution: 1. **Rewrite the Expression:** \[ 1299 \times 1299 = (1300 - 1) \times (1300 - 1) \] 2. **Apply the Binomial Square Formula:** The formula for \( (A - B)^2 \) is: \[ A^2 - 2AB + B^2 \] Here, let \( A = 1300 \) and \( B = 1 \). 3. **Calculate Each Term:** - Calculate \( A^2 \): \[ 1300^2 = 1690000 \] - Calculate \( B^2 \): \[ 1^2 = 1 \] - Calculate \( 2AB \): \[ 2 \times 1300 \times 1 = 2600 \] 4. **Combine the Results:** Substitute these values back into the formula: \[ 1299^2 = A^2 - 2AB + B^2 = 1690000 - 2600 + 1 \] 5. **Perform the Subtraction and Addition:** - First, subtract \( 2600 \) from \( 1690000 \): \[ 1690000 - 2600 = 1687400 \] - Then add \( 1 \): \[ 1687400 + 1 = 1687401 \] 6. **Final Result:** Thus, the final answer is: \[ 1299 \times 1299 = 1687401 \] ### Summary of the Steps: - Rewrite the number as \( 1300 - 1 \). - Use the binomial square formula. - Calculate \( A^2 \), \( B^2 \), and \( 2AB \). - Substitute back into the formula and simplify.
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS EXERCISE-VIII

    UPKAR PUBLICATION |Exercise QUESTION BANK|81 Videos
  • ODD MAN OUT AND SERIES

    UPKAR PUBLICATION |Exercise QUESTION BANK|75 Videos

Similar Questions

Explore conceptually related problems

1002div49xx99-1299=?

(888 xx 888 xx 888 - 222 xx 222 xx 222)/(888 xx 888 + 888 xx 222 + 222 xx 222) = ?

32 xx (27 xx 19) = (32 xx _____ ) xx 19

If 3 xx 4 xx 9 xx 3 = 4933 and 4 xx 6 xx 2 xx 1 = 6241, then 1 xx 6 xx 3 xx 2 = ?

If 4 xx 3 xx 2 xx 6 = 6234 and 6 xx 3 xx 1 xx 2 = 2136 , then 9 xx 4 xx 7 xx 1 = ?

Evaluate (991xx991xx991+9xx9xx9)/(991xx991-991xx9+9xx9)

649.6875 1299.375 866.25 346.5 99 22 ?

4xx9xx3 xx 6 = 6493, 2xx8xx1xx 8 = 8281, 3 xx 8 xx 5 xx 7 = ?