Home
Class 14
MATHS
If a = 16 and b= 5 . Then value of ((a^2...

If a = 16 and b= 5 . Then value of `((a^2 + b^2 + ab)/(a^3-b^3))` is -----

A

1/11

B

1/19

C

(121)/(3971)

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{a^2 + b^2 + ab}{a^3 - b^3}\) given \(a = 16\) and \(b = 5\), we can follow these steps: ### Step 1: Substitute the values of \(a\) and \(b\) We start by substituting the values of \(a\) and \(b\) into the expression: \[ \frac{16^2 + 5^2 + 16 \cdot 5}{16^3 - 5^3} \] ### Step 2: Calculate \(a^2\), \(b^2\), and \(ab\) Now we calculate each term in the numerator: - \(16^2 = 256\) - \(5^2 = 25\) - \(16 \cdot 5 = 80\) Adding these together: \[ 256 + 25 + 80 = 361 \] ### Step 3: Calculate \(a^3\) and \(b^3\) Next, we calculate \(a^3\) and \(b^3\) for the denominator: - \(16^3 = 4096\) - \(5^3 = 125\) Now, subtract \(b^3\) from \(a^3\): \[ 4096 - 125 = 3971 \] ### Step 4: Substitute back into the expression Now we can substitute the calculated values back into the expression: \[ \frac{361}{3971} \] ### Step 5: Simplify the expression The expression \(\frac{361}{3971}\) cannot be simplified further, but we can also notice that \(3971\) can be expressed as \(16^3 - 5^3\) using the identity: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] Thus, we can rewrite the expression as: \[ \frac{a^2 + ab + b^2}{(a - b)(a^2 + ab + b^2)} = \frac{1}{a - b} \] ### Step 6: Calculate \(a - b\) Now we find \(a - b\): \[ 16 - 5 = 11 \] ### Step 7: Final result Thus, the final value of the expression is: \[ \frac{1}{11} \] ### Final Answer: The value of \(\frac{a^2 + b^2 + ab}{a^3 - b^3}\) is \(\frac{1}{11}\). ---
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS EXERCISE-VIII

    UPKAR PUBLICATION |Exercise QUESTION BANK|81 Videos
  • ODD MAN OUT AND SERIES

    UPKAR PUBLICATION |Exercise QUESTION BANK|75 Videos

Similar Questions

Explore conceptually related problems

If a-b=5 and ab=12, find the value of a^(3)+b^(2)

If a = 2 and b = 3, find the value of (i) a + b (ii) a^(2) + ab (iii) ab - a^(2) (iv) 2a - 3b (v) 5a^(2) - 2ab (vi) a^(3) - b^(3)

If a+b=10 and ab=16 then find the value of a^2+2b^2 and a^2+ab+b^2

If a-b=2 and ab=8 , then what is the value of a^3 - b^3 ?

If a -b= 2 and ab = 15, then what is the value a^3 - b^3 ?