Home
Class 14
MATHS
250/sqrt(?)=10...

`250/sqrt(?)=10`

A

25

B

250

C

625

D

2500

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{250}{\sqrt{?}} = 10 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \frac{250}{\sqrt{?}} = 10 \] ### Step 2: Cross-multiply To eliminate the fraction, we can cross-multiply: \[ 250 = 10 \cdot \sqrt{?} \] ### Step 3: Isolate the square root Next, we want to isolate \( \sqrt{?} \). We do this by dividing both sides by 10: \[ \sqrt{?} = \frac{250}{10} \] ### Step 4: Simplify the right side Now we simplify the right side: \[ \sqrt{?} = 25 \] ### Step 5: Square both sides To find the value of \( ? \), we square both sides of the equation: \[ ? = 25^2 \] ### Step 6: Calculate \( 25^2 \) Now we calculate \( 25^2 \): \[ ? = 625 \] Thus, the value of \( ? \) is \( 625 \). ### Final Answer: The value of \( ? \) is \( 625 \). ---
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    UPKAR PUBLICATION |Exercise QUESTION BANK|68 Videos
  • STOCK AND SHARES

    UPKAR PUBLICATION |Exercise QUESTION BANK|60 Videos

Similar Questions

Explore conceptually related problems

45% of 300+sqrt(?)=56% of 750-10 % of 250 a.60 b. 130 c. 260 d. 67600

If a=(sqrt5+sqrt10)/(sqrt10-sqrt5) and b=(sqrt10-sqrt5)/(sqrt10+sqrt5) show that sqrta-sqrtb-2sqrt(ab)=0

If sqrt(3)sec290^(@)+cos ec250^(@)=sqrt(3)lambda then the value of 9 lambda^(4)+3 lambda^(2)-270 is

If sqrt(5)=2.236 and sqrt(10)=3.162 , then the value of (15)/(sqrt(10)+sqrt(20)+sqrt(40)-sqrt(5)-sqrt(80)) is

If x-(2)/(sqrt(10)-sqrt(8)),y-(2)/(sqrt(10)+2sqrt(2)) , then (x-y)^(2) =

sqrt(10+sqrt(25+sqrt(108+sqrt(154+sqrt(225))))) is (a) 4( b) 6(c)8(d)10

The value of (10sqrt(625))/(sqrt(625)-5) is: