Home
Class 14
MATHS
sqrt(4375)/sqrt(7)=?...

`sqrt(4375)/sqrt(7)`=?

A

24.75

B

27.25

C

25

D

35

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sqrt{4375}}{\sqrt{7}}\), we can follow these steps: ### Step 1: Combine the square roots Using the property of square roots that states \(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\), we can rewrite the expression: \[ \frac{\sqrt{4375}}{\sqrt{7}} = \sqrt{\frac{4375}{7}} \] ### Step 2: Calculate \(4375 \div 7\) Now we need to perform the division: \[ 4375 \div 7 = 625 \] ### Step 3: Substitute back into the square root Now we can substitute this result back into the square root: \[ \sqrt{\frac{4375}{7}} = \sqrt{625} \] ### Step 4: Calculate the square root of 625 Next, we find the square root of 625: \[ \sqrt{625} = 25 \] ### Final Answer Thus, the final answer is: \[ \frac{\sqrt{4375}}{\sqrt{7}} = 25 \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    UPKAR PUBLICATION |Exercise QUESTION BANK|68 Videos
  • STOCK AND SHARES

    UPKAR PUBLICATION |Exercise QUESTION BANK|60 Videos

Similar Questions

Explore conceptually related problems

(3+sqrt(7))/(3-sqrt(7))=a+b sqrt(7)

(5sqrt(7)+2sqrt(7))(6sqrt(7)+3sqrt(7))=?

sqrt(2)+sqrt(3)+sqrt(7)-(1)/(sqrt(2)+sqrt(3)+sqrt(7))=?

(sqrt(63)+sqrt(252))xx(sqrt(175)+sqrt(28))=?16sqrt(7) (b) 441(c)16(d)7sqrt(7)

(3+sqrt(7))/(3-sqrt(7))

(7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=

(sqrt(7)+sqrt(3))/(sqrt(7)-sqrt(3))-(sqrt(7)-sqrt(3))/(sqrt(7)+sqrt(3))

(sqrt(7)+1)/(sqrt(7)-1)-(sqrt(7)-1)/(sqrt(7)+1)=a+b sqrt(7)

show that (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))times(sqrt(7)-sqrt(5))/(sqrt(7)-sqrt(5)) =frac{(sqrt(7)-sqrt(5))^(2)}{2}