Home
Class 14
MATHS
If sqrt(2)=1.4142 then the approximate v...

If `sqrt(2)=1.4142` then the approximate value of `sqrt(2/9)` is

A

0.2321

B

0.4714

C

0.3714

D

0.4174

Text Solution

AI Generated Solution

The correct Answer is:
To find the approximate value of \( \sqrt{\frac{2}{9}} \) given that \( \sqrt{2} = 1.4142 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression \( \sqrt{\frac{2}{9}} \). We can rewrite this using the property of square roots: \[ \sqrt{\frac{2}{9}} = \frac{\sqrt{2}}{\sqrt{9}} \] ### Step 2: Simplify \( \sqrt{9} \) Next, we know that \( \sqrt{9} = 3 \). So we can substitute this into our expression: \[ \frac{\sqrt{2}}{\sqrt{9}} = \frac{\sqrt{2}}{3} \] ### Step 3: Substitute the value of \( \sqrt{2} \) Now, we substitute the given value of \( \sqrt{2} \): \[ \frac{\sqrt{2}}{3} = \frac{1.4142}{3} \] ### Step 4: Perform the division Now we need to divide \( 1.4142 \) by \( 3 \): \[ \frac{1.4142}{3} \approx 0.4714 \] ### Conclusion Thus, the approximate value of \( \sqrt{\frac{2}{9}} \) is \( 0.4714 \). ---
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    UPKAR PUBLICATION |Exercise QUESTION BANK|68 Videos
  • STOCK AND SHARES

    UPKAR PUBLICATION |Exercise QUESTION BANK|60 Videos

Similar Questions

Explore conceptually related problems

If sqrt(2)=1.414 , then find the value of (1)/(2+sqrt(2))

If sqrt(2)=1.4142, find the value of (sqrt(2))/((2+sqrt(2)))

If sqrt2=1.4142 then 7/(3+sqrt2)=

If sqrt(2)=1.414 , then find the value of (1)/(sqrt(9)-sqrt(8)) .