Home
Class 14
MATHS
sqrt(25/15625)=sqrt(?/30625)...

`sqrt(25/15625)=sqrt(?/30625)`

A

2

B

35

C

49

D

1225

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\sqrt{\frac{25}{15625}} = \sqrt{\frac{x}{30625}}\), we can follow these steps: ### Step 1: Square both sides To eliminate the square roots, we square both sides of the equation: \[ \left(\sqrt{\frac{25}{15625}}\right)^2 = \left(\sqrt{\frac{x}{30625}}\right)^2 \] This simplifies to: \[ \frac{25}{15625} = \frac{x}{30625} \] ### Step 2: Cross-multiply Next, we cross-multiply to solve for \(x\): \[ 25 \cdot 30625 = x \cdot 15625 \] ### Step 3: Calculate \(25 \cdot 30625\) Now, we calculate \(25 \cdot 30625\): \[ 25 \cdot 30625 = 765625 \] ### Step 4: Set up the equation Now we have: \[ 765625 = x \cdot 15625 \] ### Step 5: Solve for \(x\) To find \(x\), we divide both sides by \(15625\): \[ x = \frac{765625}{15625} \] ### Step 6: Calculate the division Now we perform the division: \[ x = 49 \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{49} \] ---
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    UPKAR PUBLICATION |Exercise QUESTION BANK|68 Videos
  • STOCK AND SHARES

    UPKAR PUBLICATION |Exercise QUESTION BANK|60 Videos

Similar Questions

Explore conceptually related problems

sqrt(25.3)

Find the value of sqrt(15625) and the use it to find the value of sqrt(156.25)+sqrt(1.5625)

Evaluate sqrt(50625) and hence find the value of sqrt(506.25)+sqrt(5.0625)

find the value of sqrt(50625and hence find value ) of sqrt(506.25)+sqrt(5.0625)

Find the value of sqrt(50625) Hence find the value of sqrt(506.25)+sqrt(5.0625)

Find the value of sqrt(15625) and the use it to find the value of sqrt(156.25)+sqrt(1.5625).

sqrt(-25)sqrt(36)

sqrt(25-12+155+1)=?

Given that sqrt(5625) =75 , the value of sqrt(0.5625) + sqrt(56.25) is: