Home
Class 14
MATHS
if sqrt(2)=1.4142 the value of 7/(3+sqrt...

if `sqrt(2)=1.4142` the value of `7/(3+sqrt2)`

A

1.5858

B

4.4142

C

3.4852

D

3.5858

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{7}{3 + \sqrt{2}} \) given that \( \sqrt{2} = 1.4142 \), we will rationalize the denominator. Here’s a step-by-step solution: ### Step 1: Write the expression We start with the expression: \[ \frac{7}{3 + \sqrt{2}} \] ### Step 2: Rationalize the denominator To rationalize the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator, which is \( 3 - \sqrt{2} \): \[ \frac{7}{3 + \sqrt{2}} \cdot \frac{3 - \sqrt{2}}{3 - \sqrt{2}} = \frac{7(3 - \sqrt{2})}{(3 + \sqrt{2})(3 - \sqrt{2})} \] ### Step 3: Simplify the denominator Using the difference of squares formula \( (a + b)(a - b) = a^2 - b^2 \), we calculate the denominator: \[ (3 + \sqrt{2})(3 - \sqrt{2}) = 3^2 - (\sqrt{2})^2 = 9 - 2 = 7 \] ### Step 4: Simplify the numerator Now, we simplify the numerator: \[ 7(3 - \sqrt{2}) = 21 - 7\sqrt{2} \] ### Step 5: Combine the results Putting it all together, we have: \[ \frac{21 - 7\sqrt{2}}{7} \] ### Step 6: Separate the terms We can separate the terms in the fraction: \[ \frac{21}{7} - \frac{7\sqrt{2}}{7} = 3 - \sqrt{2} \] ### Step 7: Substitute the value of \( \sqrt{2} \) Now we substitute \( \sqrt{2} = 1.4142 \): \[ 3 - 1.4142 = 1.5858 \] ### Final Answer Thus, the value of \( \frac{7}{3 + \sqrt{2}} \) is approximately: \[ \boxed{1.5858} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    UPKAR PUBLICATION |Exercise QUESTION BANK|68 Videos
  • STOCK AND SHARES

    UPKAR PUBLICATION |Exercise QUESTION BANK|60 Videos

Similar Questions

Explore conceptually related problems

If sqrt(2)=1. 4142 , the value of 7/((3+sqrt(2))) is (a) 1.5858 (b) 3.4852 (c) 3.5858 (d) 4.4142

If sqrt2=1.4142 then the value of (7)/(4+sqrt2)

If sqrt(2)=1.4142, find the value of (sqrt(2))/((2+sqrt(2)))

If sqrt2 = 1.4142 , find the value of 2sqrt2 + sqrt2 + (1)/(2 + sqrt2) + (1)/(sqrt2 - 2)

If sqrt3=1.732 and sqrt2 =1.414 , " the value of " 1/(sqrt3+sqrt2) is

If sqrt(2)=1.414 and sqrt(3)=1.732, then the value of (1+sqrt(2))/(sqrt(3)+sqrt(2))+(1-sqrt(2))/(sqrt(3)-sqrt(2)) is