Home
Class 14
MATHS
The value of log2 3xxlog3 2xxlog3 4xxlog...

The value of `log_2 3xxlog_3 2xxlog_3 4xxlog_4 3` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_2 3 \times \log_3 2 \times \log_3 4 \times \log_4 3 \), we can use the change of base formula for logarithms, which states that: \[ \log_a b = \frac{1}{\log_b a} \] ### Step-by-Step Solution: 1. **Rewrite the logarithms using the change of base formula:** \[ \log_2 3 = \frac{1}{\log_3 2} \] \[ \log_4 3 = \frac{1}{\log_3 4} \] 2. **Substitute these into the original expression:** \[ \log_2 3 \times \log_3 2 \times \log_3 4 \times \log_4 3 = \left(\frac{1}{\log_3 2}\right) \times \log_3 2 \times \log_3 4 \times \left(\frac{1}{\log_3 4}\right) \] 3. **Simplify the expression:** - The terms \( \log_3 2 \) and \( \frac{1}{\log_3 2} \) cancel each other out. - The terms \( \log_3 4 \) and \( \frac{1}{\log_3 4} \) also cancel each other out. Therefore, we have: \[ 1 \] ### Final Answer: The value of \( \log_2 3 \times \log_3 2 \times \log_3 4 \times \log_4 3 \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos
  • MISCELLANEOUS EXERCISE - III

    UPKAR PUBLICATION |Exercise QUESTION BANK|78 Videos

Similar Questions

Explore conceptually related problems

The value of |[log_3 1024, log_3 3],[log_3 8, log_3 9]| xx|[log_2 3, log_4 3],[log_3 4, log_3 4]|

Find the value of log_(5)10xxlog_(10)15xxlog_(15)20xxlog_(20)25 .

The value of log_4[|log_2{log_2(log_3)81)}] is equal to

What is the value of log_(3)2,log_(4)3.log_(5)4. . .log_(16)15 ?

Find the value of S=log_(2)4+log_(8)2+2^(log_(2)3)+3^(log_(5)4)-4^(log_(5)3)

The value of 3^(log_4 5)+4^(log_5 3)-5^(log_4 3)-3^(log_5 4)=