Home
Class 14
MATHS
If log8 x+log4 x+log2 x=11 then the valu...

If `log_8 x+log_4 x+log_2 x=11` then the value of x is

A

2

B

4

C

8

D

64

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_8 x + \log_4 x + \log_2 x = 11 \), we can follow these steps: ### Step 1: Change the base of the logarithms We will convert all logarithms to the same base. Let's convert them to base 2: \[ \log_8 x = \frac{\log_2 x}{\log_2 8} = \frac{\log_2 x}{3} \] \[ \log_4 x = \frac{\log_2 x}{\log_2 4} = \frac{\log_2 x}{2} \] \[ \log_2 x = \log_2 x \] Now substituting these into the original equation gives: \[ \frac{\log_2 x}{3} + \frac{\log_2 x}{2} + \log_2 x = 11 \] ### Step 2: Find a common denominator The common denominator for the fractions is 6. We rewrite each term: \[ \frac{2\log_2 x}{6} + \frac{3\log_2 x}{6} + \frac{6\log_2 x}{6} = 11 \] ### Step 3: Combine the fractions Now combine the fractions: \[ \frac{2\log_2 x + 3\log_2 x + 6\log_2 x}{6} = 11 \] This simplifies to: \[ \frac{11\log_2 x}{6} = 11 \] ### Step 4: Eliminate the fraction Multiply both sides by 6 to eliminate the fraction: \[ 11\log_2 x = 66 \] ### Step 5: Solve for \( \log_2 x \) Now divide both sides by 11: \[ \log_2 x = 6 \] ### Step 6: Convert back to exponential form To find \( x \), we convert from logarithmic form to exponential form: \[ x = 2^6 \] ### Step 7: Calculate the value of \( x \) Calculating \( 2^6 \): \[ x = 64 \] Thus, the value of \( x \) is \( 64 \). ---
Promotional Banner

Topper's Solved these Questions

  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos
  • MISCELLANEOUS EXERCISE - III

    UPKAR PUBLICATION |Exercise QUESTION BANK|78 Videos

Similar Questions

Explore conceptually related problems

If log_x (8x - 3) - log_x 4 =2 , then the value of x is

If log_(2) log_(10)4x=1 , then the value of x is:

If k in N, such that log_(2)x+log_(4)x+log_(8)x=log_(k)x!=1 then the value of k is

If log_2log_3log_4log_5A=x, then the value of A is (a) 120^x (b) 2^(60 x) (c) 2^(3^(4^(5^x))) (d) 5^(4^(3^(2^x)))