Home
Class 14
MATHS
Find the value of log(0.125) 64...

Find the value of `log_(0.125) 64`

A

(-2)

B

2

C

0

D

cant determined

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{0.125} 64 \), we can follow these steps: ### Step 1: Rewrite the logarithm in terms of base 2 First, we need to express both 0.125 and 64 as powers of 2. - \( 0.125 = \frac{1}{8} = \frac{1}{2^3} = 2^{-3} \) - \( 64 = 2^6 \) So we can rewrite the logarithm: \[ \log_{0.125} 64 = \log_{2^{-3}} 2^6 \] ### Step 2: Use the change of base formula Using the change of base formula for logarithms, we have: \[ \log_{a^b} c^d = \frac{d}{b} \log_a c \] Applying this to our logarithm: \[ \log_{2^{-3}} 2^6 = \frac{6}{-3} \log_2 2 \] ### Step 3: Simplify the logarithm Since \( \log_2 2 = 1 \): \[ \log_{2^{-3}} 2^6 = \frac{6}{-3} \cdot 1 = -2 \] ### Final Answer Thus, the value of \( \log_{0.125} 64 \) is: \[ \boxed{-2} \] ---
Promotional Banner

Topper's Solved these Questions

  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos
  • MISCELLANEOUS EXERCISE - III

    UPKAR PUBLICATION |Exercise QUESTION BANK|78 Videos

Similar Questions

Explore conceptually related problems

Find the value of log_(0.01)100

find the value of log_(0.6)(9/25)

If log _(10)2=0.3010 and log_(10)3=0.4771 ,find the value of log_(10)(2.25)

If log_(10) 2 = 0.3010 & log_(10) 3 = 0.4771 , find the value of log _(10) (2.25) .

Find the value of sqrt((log_(0.5)4)^(2)) .

If log_(10)3= 0.4771 and log_(10)2= 0.3010 find the value of log_(10)48

If log_(10) 4 = 0.6021 and log_(10)5 = 0.6990, then find the value of log_(10) 1600.

Find the value of log_(10) (4.04) , it being given that log_(10) 4 = 0.6021 and log_(10) e = 0.4343