Home
Class 14
MATHS
Find the value of log(32) 2^8 +log(243) ...

Find the value of `log_(32) 2^8 +log_(243) 3^7 -log_(36) 1296`

A

3

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{32} 2^8 + \log_{243} 3^7 - \log_{36} 1296 \), we will use the properties of logarithms. Let's break it down step by step. ### Step 1: Simplify \( \log_{32} 2^8 \) We know that \( 32 = 2^5 \). Therefore, we can rewrite the logarithm as follows: \[ \log_{32} 2^8 = \log_{2^5} 2^8 \] Using the property of logarithms \( \log_{a^m} b^n = \frac{n}{m} \log_a b \): \[ \log_{2^5} 2^8 = \frac{8}{5} \log_2 2 \] Since \( \log_2 2 = 1 \): \[ \log_{32} 2^8 = \frac{8}{5} \cdot 1 = \frac{8}{5} \] ### Step 2: Simplify \( \log_{243} 3^7 \) Next, we know that \( 243 = 3^5 \). Thus, we can rewrite this logarithm as: \[ \log_{243} 3^7 = \log_{3^5} 3^7 \] Using the same property: \[ \log_{3^5} 3^7 = \frac{7}{5} \log_3 3 \] Since \( \log_3 3 = 1 \): \[ \log_{243} 3^7 = \frac{7}{5} \cdot 1 = \frac{7}{5} \] ### Step 3: Simplify \( \log_{36} 1296 \) Now, we know that \( 1296 = 6^4 \) and \( 36 = 6^2 \). Therefore, we can rewrite this logarithm as: \[ \log_{36} 1296 = \log_{6^2} 6^4 \] Using the logarithmic property: \[ \log_{6^2} 6^4 = \frac{4}{2} \log_6 6 \] Since \( \log_6 6 = 1 \): \[ \log_{36} 1296 = \frac{4}{2} \cdot 1 = 2 \] ### Step 4: Combine the results Now we can combine all the results: \[ \log_{32} 2^8 + \log_{243} 3^7 - \log_{36} 1296 = \frac{8}{5} + \frac{7}{5} - 2 \] First, add the two fractions: \[ \frac{8}{5} + \frac{7}{5} = \frac{15}{5} = 3 \] Now subtract \( 2 \): \[ 3 - 2 = 1 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos
  • MISCELLANEOUS EXERCISE - III

    UPKAR PUBLICATION |Exercise QUESTION BANK|78 Videos

Similar Questions

Explore conceptually related problems

What is the value of log_(32)27xxlog_(243)8 ?

find the value of log_(2)log_(2)log_(2)16=

Find the value of (log_(3)12)(log_(3)72)-log_(3)(192)*log_(36)

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

Find the value of (7^(3))^(-2log_(7)8)