Home
Class 14
MATHS
Find the value of log(49) 16807 -log9 27...

Find the value of `log_(49) 16807 -log_9 27`

A

0

B

1

C

(3/2)

D

(-1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{49} 16807 - \log_{9} 27 \), we will break it down step by step. ### Step 1: Rewrite the logarithms using properties of logarithms We can use the change of base formula for logarithms, which states that \( \log_{a} b = \frac{\log_{c} b}{\log_{c} a} \). For simplicity, we will convert both logarithms to base 7 and base 3. ### Step 2: Simplify \( \log_{49} 16807 \) First, we recognize that: - \( 49 = 7^2 \) - \( 16807 = 7^5 \) Using the change of base formula: \[ \log_{49} 16807 = \frac{\log_{7} 16807}{\log_{7} 49} = \frac{\log_{7} (7^5)}{\log_{7} (7^2)} = \frac{5}{2} \] ### Step 3: Simplify \( \log_{9} 27 \) Next, we recognize that: - \( 9 = 3^2 \) - \( 27 = 3^3 \) Using the change of base formula: \[ \log_{9} 27 = \frac{\log_{3} 27}{\log_{3} 9} = \frac{\log_{3} (3^3)}{\log_{3} (3^2)} = \frac{3}{2} \] ### Step 4: Combine the results Now we can substitute these results back into the original expression: \[ \log_{49} 16807 - \log_{9} 27 = \frac{5}{2} - \frac{3}{2} \] ### Step 5: Perform the subtraction \[ \frac{5}{2} - \frac{3}{2} = \frac{5 - 3}{2} = \frac{2}{2} = 1 \] ### Final Answer Thus, the value of \( \log_{49} 16807 - \log_{9} 27 \) is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos
  • MISCELLANEOUS EXERCISE - III

    UPKAR PUBLICATION |Exercise QUESTION BANK|78 Videos

Similar Questions

Explore conceptually related problems

Find the value of : ( log )_(81)27

find the value of log_(0.6)(9/25)

Find the value of "log"_(27)(1)/(81)

Find the value of "log"(9)/(8)-"log"(27)/(32)+"log"(3)/(4)

Find the value of the following log_(9) 27