Home
Class 14
MATHS
Find the value of log9 81 -log4 32...

Find the value of `log_9 81 -log_4 32`

A

`1/2`

B

`-3/2`

C

`-1/2`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_9 81 - \log_4 32 \), we will break it down step by step. ### Step 1: Simplify \( \log_9 81 \) We can express \( 81 \) as \( 9^2 \). Therefore, we can rewrite the logarithm: \[ \log_9 81 = \log_9 (9^2) \] Using the logarithmic identity \( \log_a (b^n) = n \cdot \log_a b \), we have: \[ \log_9 (9^2) = 2 \cdot \log_9 9 \] Since \( \log_9 9 = 1 \): \[ \log_9 81 = 2 \cdot 1 = 2 \] ### Step 2: Simplify \( \log_4 32 \) Next, we express \( 32 \) in terms of base \( 4 \). We know that \( 32 = 2^5 \) and \( 4 = 2^2 \). Therefore, we can rewrite the logarithm: \[ \log_4 32 = \log_{2^2} (2^5) \] Using the change of base formula \( \log_{a^b} c = \frac{1}{b} \log_a c \): \[ \log_{2^2} (2^5) = \frac{1}{2} \log_2 (2^5) \] Again applying the logarithmic identity: \[ \log_2 (2^5) = 5 \cdot \log_2 2 \] Since \( \log_2 2 = 1 \): \[ \log_2 (2^5) = 5 \cdot 1 = 5 \] Thus, we have: \[ \log_4 32 = \frac{1}{2} \cdot 5 = \frac{5}{2} \] ### Step 3: Combine the results Now we can substitute back into the original expression: \[ \log_9 81 - \log_4 32 = 2 - \frac{5}{2} \] To perform the subtraction, we convert \( 2 \) into a fraction: \[ 2 = \frac{4}{2} \] Now we can subtract: \[ \frac{4}{2} - \frac{5}{2} = \frac{4 - 5}{2} = \frac{-1}{2} \] ### Final Answer Thus, the value of \( \log_9 81 - \log_4 32 \) is: \[ \boxed{-\frac{1}{2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos
  • MISCELLANEOUS EXERCISE - III

    UPKAR PUBLICATION |Exercise QUESTION BANK|78 Videos

Similar Questions

Explore conceptually related problems

Find the value of "log"(9)/(8)-"log"(27)/(32)+"log"(3)/(4)

Find the value of : ( log )_(81)27

Find the value of (log_(3)4)(log_(4)5)(log_(5)6)(log_(6)7)(log_(7)8)(log_(8)9)

If log _(12)81=x then find the value of log_(6)3