Home
Class 14
MATHS
log(10) 10+log(10) 100 +log(10) 1000+ lo...

`log_(10) 10+log_(10) 100 +log_(10) 1000+ log_(10) 10000+ log_(10)100000 ` is equals to

A

`15`

B

`log11111`

C

`log_(10) 1111`

D

`14 log_(10) 100`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{10} 10 + \log_{10} 100 + \log_{10} 1000 + \log_{10} 10000 + \log_{10} 100000 \), we will use the properties of logarithms step by step. ### Step 1: Break down each logarithm We know that: - \( \log_{10} 10 = 1 \) - \( \log_{10} 100 = \log_{10} (10^2) = 2 \cdot \log_{10} 10 = 2 \) - \( \log_{10} 1000 = \log_{10} (10^3) = 3 \cdot \log_{10} 10 = 3 \) - \( \log_{10} 10000 = \log_{10} (10^4) = 4 \cdot \log_{10} 10 = 4 \) - \( \log_{10} 100000 = \log_{10} (10^5) = 5 \cdot \log_{10} 10 = 5 \) ### Step 2: Substitute the values Now we can substitute the values we found into the original expression: \[ \log_{10} 10 + \log_{10} 100 + \log_{10} 1000 + \log_{10} 10000 + \log_{10} 100000 = 1 + 2 + 3 + 4 + 5 \] ### Step 3: Add the values Now, we add these values together: \[ 1 + 2 + 3 + 4 + 5 = 15 \] ### Conclusion Thus, the value of the expression \( \log_{10} 10 + \log_{10} 100 + \log_{10} 1000 + \log_{10} 10000 + \log_{10} 100000 \) is \( \boxed{15} \). ---
Promotional Banner

Topper's Solved these Questions

  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos
  • MISCELLANEOUS EXERCISE - III

    UPKAR PUBLICATION |Exercise QUESTION BANK|78 Videos

Similar Questions

Explore conceptually related problems

(log_(10) 500000- log_(10)5) is equal to:

The value of log_(10)1 + log_(10) 10 + log_(10)100+ …….. log_(10)(10000000000)

log_(10)10+log_(10)10^(2)+ . . .+log_(10)10^(n)

log_(10)3+log_(10)2-2log_(10)5

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

(log_(5)8)/(log_(25) 16 xx log_(100)10)