Home
Class 14
MATHS
The value of log(10)(0.000010) is...

The value of `log_(10)(0.000010)` is

A

(-5)

B

(-6)

C

(-7)

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{10}(0.000010) \), we can follow these steps: ### Step 1: Rewrite the number in scientific notation We can express \( 0.000010 \) in scientific notation: \[ 0.000010 = 1 \times 10^{-5} \] ### Step 2: Apply the logarithmic property Using the logarithmic property \( \log_{b}(mn) = \log_{b}(m) + \log_{b}(n) \), we can rewrite our expression: \[ \log_{10}(0.000010) = \log_{10}(1 \times 10^{-5}) = \log_{10}(1) + \log_{10}(10^{-5}) \] ### Step 3: Calculate \( \log_{10}(1) \) We know that: \[ \log_{10}(1) = 0 \] ### Step 4: Calculate \( \log_{10}(10^{-5}) \) Using the property \( \log_{b}(b^n) = n \): \[ \log_{10}(10^{-5}) = -5 \] ### Step 5: Combine the results Now we can combine the results from Step 3 and Step 4: \[ \log_{10}(0.000010) = 0 + (-5) = -5 \] ### Final Answer Thus, the value of \( \log_{10}(0.000010) \) is: \[ \boxed{-5} \] ---
Promotional Banner

Topper's Solved these Questions

  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos
  • MISCELLANEOUS EXERCISE - III

    UPKAR PUBLICATION |Exercise QUESTION BANK|78 Videos

Similar Questions

Explore conceptually related problems

The value of log_(10)0.0001 is

If log_(10)2=0.3010 , then the value of log_(10)80 is

Find the value of log_(10)(10.1) given that log_(10) e=0.4343 .

1.If log_(10)2=p ,then the value of log_(10)5 is