Home
Class 14
MATHS
logx(16/25)=-1/2 then x is...

`log_x(16/25)=-1/2` then `x` is

A

`625/256`

B

`256/625`

C

`526/265`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_x\left(\frac{16}{25}\right) = -\frac{1}{2} \), we will follow these steps: ### Step 1: Rewrite the logarithmic equation in exponential form. The logarithmic equation \( \log_x\left(\frac{16}{25}\right) = -\frac{1}{2} \) can be rewritten in exponential form as: \[ x^{-\frac{1}{2}} = \frac{16}{25} \] ### Step 2: Simplify the equation. The expression \( x^{-\frac{1}{2}} \) can be rewritten as: \[ \frac{1}{\sqrt{x}} = \frac{16}{25} \] ### Step 3: Invert both sides. To eliminate the fraction, we can take the reciprocal of both sides: \[ \sqrt{x} = \frac{25}{16} \] ### Step 4: Square both sides to solve for \( x \). Now, we square both sides to solve for \( x \): \[ x = \left(\frac{25}{16}\right)^2 \] ### Step 5: Calculate the square. Calculating the square gives us: \[ x = \frac{25^2}{16^2} = \frac{625}{256} \] ### Final Answer: Thus, the value of \( x \) is: \[ x = \frac{625}{256} \] ---
Promotional Banner

Topper's Solved these Questions

  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos
  • MISCELLANEOUS EXERCISE - III

    UPKAR PUBLICATION |Exercise QUESTION BANK|78 Videos

Similar Questions

Explore conceptually related problems

log_(sqrt(2))sqrt(x)+log_(2)x log_(4)(x^(2))+log_(8)(x^(3))+log_(16)(x^(4))=40 then x is equal to

If log_(3){5+4log_(3)(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) log_(2)16

If xy^(2)=4and(log)_(3)((log)_(2)x)+(log)_((1)/(3))((log)_((1)/(2))y)=1 then x equals (a)4(b)8(c)16(d)64

If log_(sqrt(2)) sqrt(x) +log_(2) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If log_(4)x+log_(2)x=6, then x is equal to a.2 b.4 c.8 d.16

If log_(16x) = 2.5 , then x = ______.

If log_(x) 2 log_((x)/(16)) 2 = log_((x)/(64)) 2, then x =

If log_(16) x + log_(x) x + log_(2) x = 14 , then x =

If "log"_(2)x + "log"_(4)x + "log"_(16)x = (21)/(4) , then x equals to